Roberts, B.C., Arredondo Carrera, H.M., Zanjani-pour, S. et al. (4 more authors) (2020) PTH(1–34) treatment and/or mechanical loading have different osteogenic effects on the trabecular and cortical bone in the ovariectomized C57BL/6 mouse. Scientific Reports, 10 (1). 8889. ISSN 2045-2322
Abstract
In preclinical mouse models, a synergistic anabolic response to PTH(1–34) and tibia loading was shown. Whether combined treatment improves bone properties with oestrogen deficiency, a cardinal feature of osteoporosis, remains unknown. This study quantified the individual and combined longitudinal effects of PTH(1–34) and loading on the bone morphometric and densitometric properties in ovariectomised mice. C57BL/6 mice were ovariectomised at 14-weeks-old and treated either with injections of PTH(1–34); compressive loading of the right tibia; both interventions concurrently; or both interventions on alternating weeks. Right tibiae were microCT-scanned from 14 until 24-weeks-old. Trabecular metaphyseal and cortical midshaft morphometric properties, and bone mineral content (BMC) in 40 different regions of the tibia were measured. Mice treated only with loading showed the highest trabecular bone volume fraction at week 22. Cortical thickness was higher with co-treatment than in the mice treated with PTH alone. In the mid-diaphysis, increases in BMC were significantly higher with loading than PTH. In ovariectomised mice, the osteogenic benefits of co-treatment on the trabecular bone were lower than loading alone. However, combined interventions had increased, albeit regionally-dependent, benefits to cortical bone. Increased benefits were largest in the mid-diaphysis and postero-laterally, regions subjected to higher strains under compressive loads.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Department of Human Metabolism (Sheffield) The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Department of Oncology (Sheffield) |
Funding Information: | Funder Grant number NATIONAL CENTRE FOR THE REPLACEMENT, REFINEMENT AND REDUCTION OF ANIMALS IN RESEARCH NC/R001073/1 ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/S032940/1 Engineering and Physical Sciences Research Council EP/K03877X/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 15 Jun 2020 13:41 |
Last Modified: | 20 Jul 2020 12:54 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-020-65921-1 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:161566 |