Liu, Y., Li, X., Xue, Y. et al. (3 more authors) (2020) Outlier-robust Schmidt-Kalman filter using variational inference. In: Proceedings of 2020 IEEE 23rd International Conference on Information Fusion (FUSION). 2020 IEEE 23rd International Conference on Information Fusion (FUSION), 06-09 Jul 2020, Rustenburg, South Africa. IEEE , pp. 1-8. ISBN 9781728168302
Abstract
The Schmidt-Kalman filter (SKF) achieves filtering consistency in the presence of biases in system dynamic and measurement models through accounting for their impacts when updating the state estimate and covariance. However, the performance of the SKF may break down when the measurements are subject to non-Gaussian and heavy-tail noise. To address this, we impose the Wishart prior distribution on the precision matrix of measurement noise, such that the measurement likelihood now has heavier tails than the Gaussian distribution to deal with the potential occurrence of outliers. Variational inference is invoked to establish analytically tractable methods for computing the posterior of the system state, system biases, and the measurement noise precision matrix. The principle of the SKF considers the effect of system biases but does not actively estimate them when two variants of outlier-robust SKFs are incorporated. We evaluate their performance in terms of estimation accuracy and filtering consistency using simulations and real-world data. Promising results are obtained.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Reproduced in accordance with the publisher's self-archiving policy. |
Keywords: | Noise measurement; Atmospheric measurements; Particle measurements; Covariance matrices; Extraterrestrial measurements; State-space methods; State estimation |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 09 Jun 2020 07:31 |
Last Modified: | 10 Sep 2021 00:38 |
Status: | Published |
Publisher: | IEEE |
Refereed: | Yes |
Identification Number: | 10.23919/FUSION45008.2020.9190507 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:161395 |