On the impact of different kernels and training data on a Gaussian process approach for target tracking

Aftab, W. and Mihaylova, L. orcid.org/0000-0001-5856-2223 (2020) On the impact of different kernels and training data on a Gaussian process approach for target tracking. In: Proceedings of 2020 IEEE 23rd International Conference on Information Fusion (FUSION). 2020 IEEE 23rd International Conference on Information Fusion (FUSION), 06-09 Jul 2020, Rustenburg, South Africa. IEEE , pp. 1-6. ISBN 9781728168302

Abstract

Metadata

Item Type: Proceedings Paper
Authors/Creators:
Copyright, Publisher and Additional Information:

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Reproduced in accordance with the publisher's self-archiving policy.

Keywords: Target Tracking; Gaussian Process; Gaussian Process Motion Tracking; Nonlinear Estimation; Data Driven Methods
Dates:
  • Published: 10 September 2020
  • Published (online): 10 September 2020
  • Accepted: 1 May 2020
Institution: The University of Sheffield
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield)
Funding Information:
Funder
Grant number
Engineering and Physical Sciences Research Council
EP/T013265/1
Depositing User: Symplectic Sheffield
Date Deposited: 09 Jun 2020 07:23
Last Modified: 10 Sep 2021 00:38
Status: Published
Publisher: IEEE
Refereed: Yes
Identification Number: 10.23919/FUSION45008.2020.9190413
Related URLs:
Open Archives Initiative ID (OAI ID):

Export

Statistics