Mehreganian, N., Louca, L.A., Langdon, G.S. orcid.org/0000-0002-0396-9787 et al. (2 more authors) (2018) The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques. International Journal of Impact Engineering, 115. pp. 81-93. ISSN 0734-743X
Abstract
This paper presents a comparative study of numerical, experimental and empirical techniques on the effect of localised air blast loads on mild steel and armour steel plates. The blast load effects on monolithic plates have been accounted for by using different approaches provided in the Finite Element hydrocode ABAQUS 6.13, namely an Eulerian Lagrangian and a Coupled Eulerian Lagrangian model. In the first model, the air and the explosive were modelled using multi-material Eulerian grids while the plate was modelled using a rigid Lagrangian mesh, while in the second model the rigid target was replaced with deformable plate.
The transient deformation of the plate, strain localisation, pressure distribution on the plate have been investigated in the FE models, which have been validated against small scale experimental data for a limited range of charge sizes for both the mild steel and armoured steel. Despite the lower deflection of armour steel compared to mild steel plates, both plates were shown to undergo rupture upon similar charge mass and stand-off. For this purpose, a non-dimensional analysis was carried out with consideration of stand-off distance and slenderness ratio to predict the rupture impulse.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 Elsevier. This is an author produced version of a paper subsequently published in International Journal of Impact Engineering. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | Blast loading; Numerical techniques; Transient response; Steel; Permanent deflection |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Civil and Structural Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 02 Apr 2020 13:13 |
Last Modified: | 02 Apr 2020 13:59 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.ijimpeng.2018.01.010 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:159063 |