Parsons, S.G. orcid.org/0000-0002-2695-2654, Brown, A.J. orcid.org/0000-0002-3316-7240, Littlefair, S.P. et al. (8 more authors) (2020) A pulsating white dwarf in an eclipsing binary. Nature Astronomy, 4 (7). pp. 690-696. ISSN 2397-3366
Abstract
White dwarfs are the burnt-out cores of Sun-like stars and are the fate of 97 per cent of the stars in our Galaxy. The internal structure and composition of white dwarfs are hidden by their high gravities, which causes all elements apart from the lightest ones to settle out of their atmospheres. The most direct method of probing the inner structure of stars and white dwarfs in detail is via asteroseismology. Here we present a pulsating white dwarf in an eclipsing binary system, enabling us to place extremely precise constraints on the mass and radius of the white dwarf from the lightcurve, independent of the pulsations. This 0.325-solar-mass white dwarf—one member of the SDSS J115219.99+024814.4 system—will serve as a powerful benchmark with which to constrain empirically the core composition of low-mass stellar remnants and to investigate the effects of close binary evolution on the internal structure of white dwarfs.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 The Author(s). This is an author-produced version of a paper subsequently published in Nature Astronomy. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Department of Physics and Astronomy (Sheffield) |
Funding Information: | Funder Grant number SCIENCE AND TECHNOLOGY FACILITIES COUNCIL ST/R003424/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Mar 2020 09:54 |
Last Modified: | 03 Dec 2021 12:04 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41550-020-1037-z |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:158498 |