Sardar, S, Kale, G orcid.org/0000-0002-3021-5905, Cespedes, O orcid.org/0000-0002-5249-9523 et al. (1 more author) (2020) Environmentally sustainable facile synthesis of nanocrystalline holmium hafnate (Ho2Hf2O7): Promising new oxide-ion conducting solid electrolyte. SN Applied Sciences, 2 (4). 541. ISSN 2523-3963
Abstract
A2B2O7 oxides with defect-fluorite structure are one of the potential candidates for solid oxide fuel cell electrolyte material due to their excessive thermodynamic stability in oxygen potential gradient at elevated temperature between 500 and 900 °C. Holmium hafnate nanoparticles have been synthesised through the Leeds Alginate Process (LAP) using inorganic salts of holmium and hafnium as starting materials immobilized in alginate beads. Ion exchange with sodium alginate and its subsequent thermal treatment have been used to prepare the nanopowder of Ho2Hf2O7. Thermal decomposition of dried beads is carried out at 700 °C for 2 h and 6 h to obtain the nanoparticles of Ho2Hf2O7. This calcination temperature was determined after carrying out simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC). High Temperature X-ray Diffraction (HT-XRD) was carried out to gain further insight into the thermal decomposition process in static ambient environment. HT-XRD analysis corroborated with the results obtained from TGA/DSC. Nano-crystalline powder of single phase Ho2Hf2O7 has been obtained by calcination of oven dried ion-exchanged alginate beads in relatively low temperature range of 500–700 °C. Rietveld refinement of X-ray diffraction (XRD) data confirmed the formation of single phase defect fluorite structure of Ho2Hf2O7. The crystallographic parameters calculated from TEM and XRD analysis are in excellent agreement with each other. Furthermore, TEM–EDX analysis confirms that the Ho2Hf2O7 synthesised by the facile alginate process is nearly stoichiometric. Raman spectroscopy gives evidence of the presence of oxide-ion vacancy in holmium hafnate which is supported with ac-impedance spectroscopy measurement at selected three temperatures. The present study suggests that the LAP has the capability of yielding on a large scale single phase defect-fluorite nanoparticles of electrolyte materials for solid oxide fuel cells in environmentally sustainable, economical and energy efficiently manner.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Alginate synthesis; Nanoparticles; Holmium hafnate; Fluorite; Electrolytes; Fuel cells |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Condensed Matter (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 25 Feb 2020 13:53 |
Last Modified: | 25 Jun 2023 22:10 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s42452-020-2336-9 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:157639 |
Download
Filename: Sardar2020_Article_EnvironmentallySustainableFaci.pdf
Licence: CC-BY 4.0