Nabizadeh, A, Hassanzadeh, H, Asadieraghi, M et al. (4 more authors) (2020) A parametric study of the drying process of polypropylene particles in a pilot-scale fluidized bed dryer using Computational Fluid Dynamics. Chemical Engineering Research and Design, 156. pp. 13-22. ISSN 0263-8762
Abstract
Fluidized Bed Dryer (FBD) is one of the efficient methods for drying moist particulate products. At the same time, the design and optimization of a full industrial scale FDB requires extensive studies. Using a pilot-scale dryer can be deemed as an efficient tool to obtain essential information on the drying phenomenon. Although these kinds of experimental analyses can provide valuable insight, there are still some operational limitations, including high-pressure or high-temperature conditions, which make the use of a computational procedure highly desirable. In this study, Computational Fluid Dynamics (CFD) approach has been employed to investigate a dryer. The results of numerical simulations were verified using the experimental data obtained from a pilot-scale dryer. The present investigation aims to study the effects of different operating conditions. It was observed that the impacts of gas inlet temperature were negligible, as the dryer was equipped with a thermal jacket, while the gas injection velocity had significant effects on the dryer’s performance. Moreover, the efficiencies of the conical and horizontal gas distributors were compared and it was concluded that the conical configuration results in better performance. The numerical and experimental investigation from this study can facilitate the design and scale-up of an industrial dryer plant.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. This is an author produced version of a paper published in Chemical Engineering Research and Design. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Fluidized bed dryer; Computational fluid dynamics; Drying technology; Moisture |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 21 Feb 2020 11:01 |
Last Modified: | 11 Jan 2021 01:39 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.cherd.2020.01.005 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:157495 |