Hunter-Ayad, J and Hassall, C orcid.org/0000-0002-3510-0728 (2020) An empirical, cross-taxon evaluation of landscape-scale connectivity. Biodiversity and Conservation, 29. pp. 1339-1359. ISSN 0960-3115
Abstract
Connectivity is vital for the maintenance of spatially structured ecosystems, but is threatened by anthropogenic processes that degrade habitat networks. Thus, connectivity enhancement has become a conservation priority, with resources dedicated to enhancing habitat networks. However, much effort may be wasted on ineffective management, as conservation theory and practice can be poorly linked. Here we evaluate the success of landscape management designed to restore connectivity in the Humberhead wetlands (UK). Hybrid pattern-process models were created for six species, representing key taxa in the wetland ecosystem. Habitat suitability models were used to provide the spatial context for individual-based models that predicted metapopulation dynamics, including functional connectivity. To create models representing post-management conditions, landscape structure was modified to represent local improvements in habitat quality achieved through management. Models indicate that management had limited success in enhancing connectivity. Interventions have buffered existing connectivity in several species’ habitat networks, with inter-patch movement increasing for modelled species by up to 22% (for water vole, Arvicola amphibius), but have not reconnected isolated habitat fragments. Field surveys provided provisional support for the accuracy of baseline models, but could not identify predicted benefits from management interventions, likely due to time-lags following these interventions. Despite lacking clear empirical support as yet, models suggest the management of the Humberhead wetlands has successfully enhanced the landscape-scale ecological network, achieving management targets. However we identify key limitations to this success and provide specific recommendations for improvement of future landscape-scale management. Our developments in model application and integration can be developed further and be usefully applied to studies of species and/or community dynamics in a range of contexts.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Connectivity; Landscape-scale management; Individual-based model; Hybrid model; Conservation evaluation |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Biology (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 20 Jan 2020 10:22 |
Last Modified: | 09 Oct 2020 14:27 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s10531-020-01938-2 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:155781 |
Download
Filename: Hunter-Ayad-Hassall2020_Article_AnEmpiricalCross-taxonEvaluati.pdf
Licence: CC-BY 4.0