Mitseas, IP and Beer, M (2019) Modal decomposition method for response spectrum based analysis of nonlinear and non-classically damped systems. Mechanical Systems and Signal Processing, 131. pp. 469-485. ISSN 0888-3270
Abstract
A novel inelastic modal decomposition method for random vibration analysis in alignment with contemporary aseismic code provisions (e.g., Eurocode 8) considering non-classically damped and nonlinear multi degree-of-freedom (MDOF) systems is developed. Relying on statistical linearization and state-variable formulation the complex eigenvalue problem considering inelastic MDOF structural systems subject to a vector of stochastic seismic processes is addressed. The involved seismic processes are characterized by power spectra compatible in a stochastic sense with an assigned elastic response uniform hazard spectrum (UHS) of specified modal damping ratio. Equivalent modal properties (EMPs) of the linearized MDOF system, namely equivalent pseudo-undamped natural frequencies and equivalent modal damping ratios are provided. To this aim, each mode of vibration is assigned with a different stationary random process compatible with the excitation response spectrum adjusted to the corresponding equivalent modal damping ratio property. Next, an efficient iterative scheme is devised achieving convergence of the equivalent modal damping ratios and the damping premises of the excitation response spectrum corresponding to each mode of the system. Subsequently, the stochastically derived forced vibrational modal properties of the structure are utilized together with the appropriate mean response elastic UHS for determining peak nonlinear responses in modal coordinates. The modal participation factors are determined for the complex-valued mode shapes and generalized square-root-of-sums-squared (SRSS) is employed as the modal combination rule for determining the peak total responses of the system in physical space. The pertinency and applicability of the proposed framework is numerically illustrated using a three-storey bilinear hysteretic frame structure exposed to the Eurocode 8 elastic response spectrum. Nonlinear response time-history analysis (RHA) involving a large ensemble of stationary Eurocode 8 spectrum compatible accelerograms is conducted to assess the accuracy of the proposed methodology in a Monte Carlo-based context.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Elsevier Ltd. All rights reserved. This is an author produced version of an article published in Mechanical Systems and Signal Processing. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Nonlinear stochastic dynamics; Complex modal analysis; Bilinear MDOF hysteretic systems; Statistical linearization; Forced vibrational characteristics; Stochastic processes |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Civil Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 10 Dec 2019 10:56 |
Last Modified: | 10 Jun 2020 00:38 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.ymssp.2019.05.056 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:154376 |