Cucco, F, Barrans, S, Sha, C et al. (21 more authors) (2020) Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia, 34. pp. 1329-1341. ISSN 0887-6924
Abstract
Using a Burkitt lymphoma-like gene expression signature, we recently defined a high-risk molecular high-grade (MHG) group mainly within germinal centre B-cell like diffuse large B-cell lymphomas (GCB-DLBCL), which was enriched for MYC/BCL2 double-hit (MYC/BCL2-DH). The genetic basis underlying MHG-DLBCL and their aggressive clinical behaviour remain unknown. We investigated 697 cases of DLBCL, particularly those with MYC/BCL2-DH (n = 62) by targeted sequencing and gene expression profiling. We showed that DLBCL with MYC/BCL2-DH, and those with BCL2 translocation, harbour the characteristic mutation signatures that are associated with follicular lymphoma and its high-grade transformation. We identified frequent MYC hotspot mutations that affect the phosphorylation site (T58) and its adjacent amino acids, which are important for MYC protein degradation. These MYC mutations were seen in a subset of cases with MYC translocation, but predominantly in those of MHG. The mutations were more frequent in double-hit lymphomas with IG as the MYC translocation partner, and were associated with higher MYC protein expression and poor patient survival. DLBCL with MYC/BCL2-DH and those with BCL2 translocation alone are most likely derived from follicular lymphoma or its precursor lesion, and acquisition of MYC pathogenic mutations may augment MYC function, resulting in aggressive clinical behaviour.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Molecular and Cellular Biology (Leeds) |
Funding Information: | Funder Grant number Cancer Research UK C7845/A17723 |
Depositing User: | Symplectic Publications |
Date Deposited: | 09 Dec 2019 13:45 |
Last Modified: | 25 Jun 2023 22:04 |
Status: | Published |
Publisher: | Springer Nature |
Identification Number: | 10.1038/s41375-019-0691-6 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:154312 |