Zhao, S., Butera, S., Lioliou, G. et al. (2 more authors) (2019) High temperature AlInP X-ray spectrometers. Scientific Reports, 9 (1). 12155.
Abstract
Two custom-made Al0.52In0.48P p+-i-n+ mesa photodiodes with different diameters (217 µm ± 15 µm and 409 µm ± 28 µm) and i layer thicknesses of 6 µm have been electrically characterised over the temperature range 0 °C to 100 °C. Each photodiode was then investigated as a high-temperature-tolerant photon counting X-ray detector by connecting it to a custom-made low-noise charge-sensitive preamplifier and illuminating it with an 55Fe radioisotope X-ray source (Mn Kα = 5.9 keV; Mn Kβ = 6.49 keV). At 100 °C, the best energy resolutions (full width at half maximum at 5.9 keV) achieved using the 217 µm ± 15 µm diameter photodiode and the 409 µm ± 28 µm diameter photodiode were 1.31 keV ± 0.04 keV and 1.64 keV ± 0.08 keV, respectively. Noise analysis of the system is presented. The dielectric dissipation factor of Al0.52In0.48P was estimated as a function of temperature, up to 100 °C. The results show the performance of the thickest Al0.52In0.48P X-ray detectors so far reported at high temperature. The work has relevance for the development of novel space science instrumentation for use in hot space environments and extreme terrestrial applications.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 The Authors. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 16 Oct 2019 09:11 |
Last Modified: | 16 Oct 2019 09:11 |
Status: | Published |
Publisher: | Nature Research (part of Springer Nature) |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-019-48394-9 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:151633 |