Osborn, TJ, Wallace, CJ, Lowe, JA orcid.org/0000-0002-8201-3926 et al. (1 more author) (2018) Performance of Pattern-Scaled Climate Projections under High-End Warming. Part I: Surface Air Temperature over Land. Journal of Climate, 31 (14). pp. 5667-5680. ISSN 0894-8755
Abstract
Pattern scaling is widely used to create climate change projections to investigate future impacts. We consider the performance of pattern scaling for emulating the HadGEM2-ES general circulation model (GCM) paying particular attention to “high end” warming scenarios and to different choices of GCM simulations used to diagnose the climate change patterns. We demonstrate that evaluating pattern-scaling projections by comparing them with GCM simulations containing unforced variability gives a significantly less favorable view of the actual performance of pattern scaling. Using a four-member initial-condition ensemble of HadGEM2-ES simulations, we infer that the root-mean-square errors of pattern-scaled monthly temperature changes over land are less than 0.25°C for global warming up to approximately 3.5°C. Some regional errors are larger than this and, for this GCM, there is a tendency for pattern scaling to underestimate warming over land. For warming above 3.5°C, the pattern-scaled projection errors grow but remain small relative to the climate change signal. We investigate whether patterns diagnosed by pooling GCM experiments from several scenarios are suitable for emulating the GCM under a high-end warming scenario. For global warming up to 3.5°C, pattern scaling using this pooled pattern closely emulates GCM simulations. For warming beyond 3.5°C, pattern-scaling performance is notably improved by using patterns diagnosed only from the high-forcing representative concentration pathway 8.5 (RCP8.5) scenario. Assessments of climate change impacts under high-end warming using pattern-scaling projections could be improved by using change patterns diagnosed from pooled scenarios for projections up to 3.5°C above preindustrial levels and patterns diagnosed from only strong forcing simulations for projecting beyond that. Similar findings are obtained for five other GCMs.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Copyright 2018 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation). |
Keywords: | Climate change; Temperature; Statistical techniques; Climate models; Anthropogenic effects |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 04 Sep 2019 11:26 |
Last Modified: | 04 Sep 2019 11:26 |
Status: | Published |
Publisher: | American Meteorological Society |
Identification Number: | 10.1175/JCLI-D-17-0780.1 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:150374 |