Yang, D, Pang, Y, Zhou, B et al. (1 more author) (2019) Fault Diagnosis for Energy Internet Using Correlation Processing-Based Convolutional Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49 (8). pp. 1739-1748. ISSN 2168-2216
Abstract
Fault feature extraction based on prior knowledge and raw data is increasingly becoming more challenging in energy Internet fault diagnosis due to complicated network topology and coupling disturbances introduced into the systems. Deep learning methods that have emerged in recent years, such as the convolutional neural networks (CNNs), have shown a number of advantages and great potentials in the field of feature extraction and image recognition. However, CNNs does not work well in fault diagnosis for industrial systems, due to the totally different data representations between images used in recognition and signals obtained from industrial processes. This paper tackles this problem by introducing a novel and generic fault diagnosis method for complicated system, namely, the Spearman rank correlation-based CNNs (SR-CNNs). By imposing the Spearman rank correlation image layer on the typical CNNs, the multiple time-series signals measured by the phasor measurement units (PMUs) is converted to appropriate data images, which are then fed to the CNNs. With the aid of this novel design, different fault features can be comprehensively extracted while the fault can be identified more quickly and precisely than other conventional approaches. To validate the efficacy of the proposed approach, an IEEE defined power gird with many new energy resources are used as the test platform. The experimental results confirm the effectiveness and superiority of the proposed method in energy Internet fault diagnosis over conventional methods.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Keywords: | Convolutional neural network (CNN), |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Communication & Power Networks (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 10 Jul 2019 15:23 |
Last Modified: | 15 Aug 2019 11:17 |
Status: | Published |
Publisher: | IEEE |
Identification Number: | 10.1109/TSMC.2019.2919940 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:148382 |