Olumayegun, O. orcid.org/0000-0003-3801-6385 and Wang, M. orcid.org/0000-0001-9752-270X (2019) Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes. Fuel, 249. pp. 89-102. ISSN 0016-2361
Abstract
Large amount of waste heat is available for recovery in industrial processes worldwide. However, significant proportion (up to 50%) of this thermal energy is released directly to the environment. Application of waste heat to power (WHP) technologies can increase the energy efficiency and cut CO2 emissions from these facilities. Steam Rankine cycle (SRC) and organic Rankine cycle (ORC) are commonly deployed for this purpose. The main drawback of SRC and ORC is the high irreversibility in the heat exchangers. In addition, ORC has limited temperature range and low efficiency while SRC has a large footprint. Supercritical CO2 (sCO2) power cycle is considered an attractive option, which provides better matching of waste heat temperature in the main heater (i.e. low irreversibility). It offers compact design, improved performance and it is applicable to a wide range of waste heat source temperature. The conditions of industrial waste heat sources are highly variable due to continuous fluctuations in the operation of the process. This is likely to significantly affect the dynamic performance and operation of the sCO2 power cycle. In this work, dynamic model in Matlab/Simulink was developed to assess the dynamic performance and control of the sCO2 power cycle for waste heat recovery from cement industry. The case of waste heat at 380 °C utilized to deliver 5 MWe of power was considered. Steady state simulation was performed to determine the design point values. Open loop simulation was performed to show the inherent dynamic response to step change in the temperature of the waste heat. The dynamic performance and control of the system under varying exhaust gas flow rate between 100% and 50% of the design value were studied. Similar study was done for varying exhaust gas temperature between 380 °C and 300 °C. The results showed that the thermal efficiency of proposed single recuperator recompression sCO2 is about 33%. Stable operation of the system can achieved by using cooling water control and throttle valve to maintain constant precooler outlet condition. Dynamic simulation result showed that it is best to allow the turbine inlet temperature to vary according to the fluctuation in the waste heat source. These findings indicated that dynamic modelling and simulation of WHP system could contribute to understanding of the behaviour and control system development under fluctuating waste heat source conditions.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Elsevier. This is an author produced version of a paper subsequently published in Fuel. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | Waste heat recovery; Cement industry; Supercritical CO2 cycle; Dynamic modelling; PID control; Industrial processes |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 29 May 2019 15:56 |
Last Modified: | 23 Mar 2020 01:40 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.fuel.2019.03.078 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:146671 |
Download
Filename: 2019_01_21_Manuscript for WHR sCO2 power cycle_V2_NoMark.pdf
Licence: CC-BY-NC-ND 4.0