Zhai, W, Yong, D, El-Jawhari, JJ orcid.org/0000-0002-0580-4492 et al. (4 more authors) (2019) Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy, 21 (8). pp. 803-819. ISSN 1465-3249
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings, in order to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable, as it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighbouring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example involving cell size and spectroscopic measurements, could be the best way forward as they do not modify the cells of interest thus maximising the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 International Society for Cell and Gene Therapy. Published by Elsevier Inc. All rights reserved. This is an author produced version of a paper published in Cytotherapy. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | label-free; multipotent mesenchymal stromal cells; non-destructive; replicative aging; senescence |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Institute of Rheumatology & Musculoskeletal Medicine (LIRMM) (Leeds) > Experimental Musculoskeletal Medicine (Leeds) The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Institute of Rheumatology & Musculoskeletal Medicine (LIRMM) (Leeds) > Orthopaedics (Leeds) |
Funding Information: | Funder Grant number Pfizer WI1209947 AO Foundation S-16-132E |
Depositing User: | Symplectic Publications |
Date Deposited: | 23 May 2019 16:05 |
Last Modified: | 25 May 2020 00:40 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.jcyt.2019.05.001 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:146242 |
Download
Filename: ReviewPaper_W.Zhai_E.Jones_revision_finalaccepted.pdf
Licence: CC-BY-NC-ND 4.0