Roarty, H., Cook, T., Hazard, L. et al. (29 more authors) (2019) The Global High Frequency Radar Network. Frontiers in Marine Science, 6. 00164. ISSN 2296-7745
Abstract
Academic, government, and private organizations from around the globe have established High Frequency radar (hereinafter, HFR) networks at regional or national levels. Partnerships have been established to coordinate and collaborate on a single global HFR network (http://global-hfradar.org/). These partnerships were established in 2012 as part of the Group on Earth Observations (GEO) to promote HFR technology and increase data sharing among operators and users. The main product of HFR networks are continuous maps of ocean surface currents within 200 km of the coast at high spatial (1–6 km) and temporal resolution (hourly or higher). Cutting-edge remote sensing technologies are becoming a standard component for ocean observing systems, contributing to the paradigm shift toward ocean monitoring. In 2017 the Global HFR Network was recognized by the Joint Technical WMO-IOC Commission for Oceanography and Marine Meteorology (JCOMM) as an observing network of the Global Ocean Observing System (GOOS). In this paper we will discuss the development of the network as well as establishing goals for the future. The U.S. High Frequency Radar Network (HFRNet) has been in operation for over 13 years, with radar data being ingested from 31 organizations including measurements from Canada and Mexico. HFRNet currently holds a collection from over 150 radar installations totaling millions of records of surface ocean velocity measurements. During the past 10 years in Europe, HFR networks have been showing steady growth with over 60 stations currently deployed and many in the planning stage. In Asia and Oceania countries, more than 110 radar stations are in operation. HFR technology can be found in a wide range of applications: for marine safety, oil spill response, tsunami warning, pollution assessment, coastal zone management, tracking environmental change, numerical model simulation of 3-dimensional circulation, and research to generate new understanding of coastal ocean dynamics, depending mainly on each country’s coastal sea characteristics. These radar networks are examples of national inter-agency and inter-institutional partnerships for improving oceanographic research and operations. As global partnerships grow, these collaborations and improved data sharing enhance our ability to respond to regional, national, and global environmental and management issues.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Roarty, Cook, Hazard, George, Harlan, Cosoli, Wyatt, Alvarez Fanjul, Terrill, Otero, Largier, Glenn, Ebuchi, Whitehouse, Bartlett, Mader, Rubio, Corgnati, Mantovani, Griffa, Reyes, Lorente, Flores-Vidal, Saavedra-Matta, Rogowski, Prukpitikul, Lee, Lai, Guerin, Sanchez, Hansen and Grilli. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. https://creativecommons.org/licenses/by/4.0/ |
Keywords: | remote sensing; high frequency radar; ocean currents; waves; tsunami; boundary currents; ocean observing system |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematics and Statistics (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 15 May 2019 13:35 |
Last Modified: | 03 Dec 2021 08:31 |
Status: | Published |
Publisher: | Frontiers Media |
Refereed: | Yes |
Identification Number: | 10.3389/fmars.2019.00164 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:146059 |