Guan, D. orcid.org/0000-0002-3953-2878, Liu, X. orcid.org/0000-0002-8491-8358, Gao, J. et al. (3 more authors) (2019) Exploring the mechanism of “Rare Earth” texture evolution in a lean Mg–Zn–Ca alloy. Scientific Reports, 9. 7152. ISSN 2045-2322
Abstract
The entire recrystallisation sequence and associated crystallographic texture evolution of Mg-0.8Zn-0.2Ca (wt.%) alloy was tracked using a quasi-in-situ electron backscatter diffraction (EBSD) method. Characteristic “Rare Earth” (RE) texture was formed, originating mainly from double twins and twinning-related shear bands consisting of compression and double twins. The RE textures appeared during the nucleation stage and were preserved during the relative uniform grain growth period because of solute segregation and concurrent precipitation although the alloying element content was very low. Ca and Zn co-segregated along grain boundaries with no evidence that segregation was preferred along special types of grain boundaries. The interactions between deformation microstructures, concurrent precipitation, solute drag, grain growth and texture evolution are discussed in detail. All the results indicate that Ca performs a similar role to that of RE elements in forming RE texture.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL (EPSRC) EP/L025213/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 15 May 2019 14:07 |
Last Modified: | 15 May 2019 14:07 |
Status: | Published |
Publisher: | Nature Research (part of Springer Nature) |
Identification Number: | 10.1038/s41598-019-43415-z |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:146046 |