Dziurzanski, Piotr, Zhao, Shuai, Swan, Jerry et al. (3 more authors) (2019) Solving the Multi-Objective Flexible Job-Shop Scheduling Problem with Alternative Recipes for a Chemical Production Process. In: Kaufmann, Paul and Castillo, Pedro A., (eds.) Applications of Evolutionary Computation - 22nd International Conference, EvoApplications 2019, Held as Part of EvoStar 2019, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) . Springer , pp. 33-48.
Abstract
This paper considers a new variant of a multi-objective flexible job-shop scheduling problem, featuring multisubset selection of manufactured recipes. We propose a novel associated chromosome encoding and customise the classic MOEA/D multi-objective genetic algorithm with new genetic operators. The applicability of the proposed approach is evaluated experimentally and showed to outperform typical multi-objective genetic algorithms. The problem variant is motivated by real-world manufacturing in a chemical plant and is applicable to other plants that manufacture goods using alternative recipes.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Editors: |
|
Copyright, Publisher and Additional Information: | This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details. |
Keywords: | Multi-objective genetic algorithms,Multi-objective job-shop scheduling,Process manufacturing optimisation |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Computer Science (York) |
Depositing User: | Pure (York) |
Date Deposited: | 01 May 2019 08:50 |
Last Modified: | 06 Feb 2025 00:04 |
Published Version: | https://doi.org/10.1007/978-3-030-16692-2_3 |
Status: | Published |
Publisher: | Springer |
Series Name: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Identification Number: | 10.1007/978-3-030-16692-2_3 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:145544 |