Gibson, R.R., Armes, S.P. orcid.org/0000-0002-8289-6351, Musa, O.M. et al. (1 more author) (2019) End-group ionisation enables the use of poly(N-(2-methacryloyloxy)ethyl pyrrolidone) as an electrosteric stabiliser block for polymerisation-induced self-assembly in aqueous media. Polymer Chemistry, 10 (11). pp. 1312-1323. ISSN 1759-9954
Abstract
A series of near-monodisperse poly(N-2-(methacryloyloxy)ethyl pyrrolidone) (PNMEP) homopolymers was prepared via reversible addition-fragmentation chain transfer (RAFT) solution polymerisation of NMEP in ethanol at 70 °C using a carboxylic acid-functional RAFT agent. The mean degree of polymerisation (DP) was varied from 19 to 89 and acid titration indicated end-group pK a values of 5.07-5.44. Turbidimetry studies indicated that homopolymer cloud points were significantly higher at pH 7 (anionic carboxylate) than at pH 3 (neutral carboxylic acid). Moreover, this enhanced hydrophilic character enabled PNMEP to be used as a steric stabiliser for aqueous polymerisation-induced self-assembly (PISA) syntheses. Thus, a PNMEP 42 precursor was chain-extended via RAFT aqueous dispersion polymerisation of 2-hydroxypropyl methacrylate (HPMA) at 44 °C. A series of PNMEP 42 -PHPMA x diblock copolymers were synthesised using this protocol, with target PHPMA DPs of 150 to 400. High conversions were achieved and a linear evolution in M n with increasing PHPMA DP was observed. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies confirmed a spherical morphology in all cases. The nanoparticles flocculated either below pH 4.5 (owing to protonation) or on addition of 60 mM KCl (as a result of charge screening). Thus the anionic end-groups on the PNMEP stabiliser chains make an important contribution to the overall colloidal stability. Similarly, a PNMEP 53 macro-CTA was chain-extended via RAFT aqueous emulsion polymerisation of 2-ethoxyethyl methacrylate (EEMA) at 44 °C. Again, a neutral solution pH was critical for the synthesis of colloidally stable nanoparticles. High conversions were achieved as the target PEEMA DP was varied between 100 and 600 and a linear evolution in molecular weight with PEEMA DP was confirmed by chloroform GPC studies. DLS experiments indicated a monotonic increase in nanoparticle diameter with PEEMA DP and TEM studies confirmed a spherical morphology in each case. In summary, PNMEP can be used as a water-soluble steric stabiliser for aqueous PISA syntheses provided that it contains an anionic carboxylate end-group to enhance its hydrophilic character.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Royal Society of Chemistry 2019. This is an author produced version of a paper subsequently published in Polymer Chemistry. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Department of Chemistry (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 29 Mar 2019 12:06 |
Last Modified: | 12 Feb 2020 01:38 |
Status: | Published |
Publisher: | Royal Society of Chemistry |
Refereed: | Yes |
Identification Number: | 10.1039/c8py01619d |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:144243 |