Zinke, R., Dolan, J.F., Rhodes, E.J. orcid.org/0000-0002-0361-8637 et al. (5 more authors) (2019) Multimillennial incremental slip rate variability of the Clarence fault at the Tophouse Road site, Marlborough Fault System, New Zealand. Geophysical Research Letters, 46 (2). pp. 717-725. ISSN 0094-8276
Abstract
Incremental slip rates of the Clarence fault, a dextral fault in the Marlborough fault system of South Island, New Zealand, varied by a factor of 4–5 during Holocene–latest Pleistocene time, as revealed by geomorphic mapping and luminescence dating of faulted fluvial landforms at the Tophouse Road site. We used high-resolution lidar microtopographic data and field surveys to map the fine-scale geomorphology and precisely restore the offset features. We dated the offsets using a stratigraphically informed protocol for infrared stimulated luminescence dating. These data show that incremental slip rates varied from ~2.0 to 9.6 mm/year, averaged over multiple earthquakes and millennial timescales. Comparison to incremental slip rates of the nearby Awatere fault suggests that these faults may behave in coordinated (and anticorrelated) fashion. This study adds to a growing body of evidence suggesting that incremental slip rate variation spanning multiple earthquake cycles may be more common than previously recognized.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 American Geophysical Union. Reproduced in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Social Sciences (Sheffield) > Department of Geography (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 25 Feb 2019 10:21 |
Last Modified: | 03 Jun 2019 00:43 |
Published Version: | https://doi.org/10.1029/2018GL080688 |
Status: | Published |
Publisher: | American Geophysical Union |
Refereed: | Yes |
Identification Number: | 10.1029/2018GL080688 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:142880 |