Salvetti, M., Sbarufatti, C., Cross, E. orcid.org/0000-0001-5204-1910 et al. (3 more authors) (2019) On the performance of a cointegration-based approach for novelty detection in realistic fatigue crack growth scenarios. Mechanical Systems and Signal Processing, 123. pp. 84-101. ISSN 0888-3270
Abstract
Confounding influences, such as operational and environmental variations, represent a limitation to the implementation of Structural Health Monitoring (SHM) systems in real structures, potentially leading to damage misclassifications. In this framework, this study considers cointegration as a state of the art method for data normalisation in fatigue crack propagation scenarios, where monitoring is performed by a distributed network of strain sensors. Specifically, the work is aimed at demonstrating the effectiveness of cointegration on real engineering data in a new context, where the damage is continuously growing. Cointegration is applied at first in a controlled scenario consisting of a numerical strain simulation by means of a finite element model, modified in order to take realistic temperature fluctuations and sensor noise into account. Afterwards, detrending and anomaly detection performances are verified in two different experimental programmes on realistic aeronautical structures subjected to fatigue crack growth, including a full-scale fatigue test on a helicopter tail boom. Strain measurements are taken from a network of Fibre Bragg Grating (FBG) sensors, known to be extremely sensitive to temperature variations, hence delivering challenging scenarios for cointegration testing. Results are shown to be in good agreement with the experimental evidence, with the cointegration algorithm capable of detecting the onset of damage propagation within a 4 mm increment from a baseline condition.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Elsevier. This is an author produced version of a paper subsequently published in Mechanical Systems and Signal Processing. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | Fatigue crack growth; Cointegration; Fibre Bragg Grating; Strain; Structural Health Monitoring |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Mechanical Engineering (Sheffield) |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL (EPSRC) EP/J016942/1 ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL (EPSRC) EP/R003645/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 21 Jan 2019 11:03 |
Last Modified: | 11 Jan 2020 01:39 |
Published Version: | https://doi.org/10.1016/j.ymssp.2019.01.007 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.ymssp.2019.01.007 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:141351 |