Wang, JL, Duboc, C, Wu, Q orcid.org/0000-0002-6948-7043 et al. (8 more authors) (2018) Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nature Structural & Molecular Biology, 25 (6). pp. 482-487. ISSN 1545-9993
Abstract
Repairing DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nanomanipulation, allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and the addition of PAXX extends this lifetime to ~2 s. Further addition of XRCC4, XLF and ligase IV results in minute-scale synapsis and leads to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kilocalories per mole. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 Nature America Inc., part of Springer Nature. This is a post-peer-review, pre-copyedit version of an article published in Nature Structural & Molecular Biology. The final authenticated version is available online at: http://doi.org/10.1038/s41594-018-0065-1 |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Molecular and Cellular Biology (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 10 Dec 2018 12:54 |
Last Modified: | 10 Feb 2020 11:08 |
Status: | Published |
Publisher: | Nature Research |
Identification Number: | 10.1038/s41594-018-0065-1 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:139709 |