Moorhouse-Gann, R.J., Dunn, J.C. orcid.org/0000-0002-6277-2781, de Vere, N. et al. (4 more authors) (2018) New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Scientific Reports, 8 (1). 8542. ISSN 2045-2322
Abstract
DNA metabarcoding is a rapidly growing technique for obtaining detailed dietary information. Current metabarcoding methods for herbivory, using a single locus, can lack taxonomic resolution for some applications. We present novel primers for the second internal transcribed spacer of nuclear ribosomal DNA (ITS2) designed for dietary studies in Mauritius and the UK, which have the potential to give unrivalled taxonomic coverage and resolution from a short-amplicon barcode. In silico testing used three databases of plant ITS2 sequences from UK and Mauritian floras (native and introduced) totalling 6561 sequences from 1790 species across 174 families. Our primers were well-matched in silico to 88% of species, providing taxonomic resolution of 86.1%, 99.4% and 99.9% at the species, genus and family levels, respectively. In vitro, the primers amplified 99% of Mauritian (n = 169) and 100% of UK (n = 33) species, and co-amplified multiple plant species from degraded faecal DNA from reptiles and birds in two case studies. For the ITS2 region, we advocate taxonomic assignment based on best sequence match instead of a clustering approach. With short amplicons of 187–387 bp, these primers are suitable for metabarcoding plant DNA from faecal samples, across a broad geographic range, whilst delivering unparalleled taxonomic resolution.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 . |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Animal and Plant Sciences (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 13 Feb 2019 13:56 |
Last Modified: | 13 Feb 2019 13:56 |
Published Version: | https://doi.org/10.1038/s41598-018-26648-2 |
Status: | Published |
Publisher: | Nature Research |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-018-26648-2 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:139079 |