Gong, P., Liu, X.G., Rijkenberg, A. et al. (1 more author) (2018) The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium. Acta Materialia, 161. pp. 374-387. ISSN 1359-6454
Abstract
Despite much research into steels strengthened through interphase precitation, there remains much that is not clear, such as the role of a range of elements, particularly Mo, in the interphase precipitation process. Four steels were manufactured with identical composition, but with variations in Ti, V, Mo and N content to investigate the effect of composition on interphase precipitation. Alloys were rapidly cooled from the single austenite phase field and isothermally transformed at 630 °C and 650 °C for 90min. The addition of Mo was found to significantly reduce the austenite to ferrite transformation kinetics, particularly for the V steel. Interphase precipitation was observed in all alloys at both transformation temperatures. For the Ti bearing steel, the two types of precipitate were observed throughout the sample, namely TiC (finer) and Ti2C (coarser), while for the V bearing steels, VC (finer) and V4C3(coarser) were observed. Where Mo was present in the alloy, it was found dissolved in all carbide types. The (Ti,Mo)C and (V,Mo)C formed by classical planer interphase precipitation (PIP) while the (Ti,Mo)2C and (V,Mo)4C3, that had a much wider row spacing, formed through curved interphase precipitation (CIP). Each adopted one variant of the Baker-Nutting orientation relationship. The Ti-microalloyed steels exhibited the smallest precipitates of all the steels, which were approximately the same size irrespective of whether Mo was present in the alloy and irrespective of the transformation temperature. However, the addition of Mo to the V bearing steels resulted in a significant increase in precipitate volume fraction and a reduction in precipitate size. The mechanisms of interphase precipitation leading to the coincident production of two different precipitate types is considered and the role of Mo on the interphase precipitation process is discussed. The resultant effect on strength is considered.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an author produced version of a paper subsequently published in Acta Materialia. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | Microalloyed steels; Interphase precipitation; Molybdenum; Dilatometry |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL (EPSRC) EP/L025213/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 15 Oct 2018 13:21 |
Last Modified: | 10 Sep 2019 00:39 |
Published Version: | https://doi.org/10.1016/j.actamat.2018.09.008 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.actamat.2018.09.008 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:137168 |
Download
Filename: Fe-V-Mo_interphase_precipitation_paper_A-18-323_R2_final.pdf
Licence: CC-BY-NC-ND 4.0