White, TW, Duncan, DA, Fortuna, S et al. (6 more authors) (2018) A structural investigation of the interaction of oxalic acid with Cu(110). Surface Science, 668. pp. 134-143. ISSN 0039-6028
Abstract
The interaction of oxalic acid with the Cu(110) surface has been investigated by a combination of scanning tunnelling microscopy (STM), low energy electron diffraction (LEED), soft X-ray photoelectron spectroscopy (SXPS), near-edge X-ray absorption fine structure (NEXAFS) and scanned-energy mode photoelectron diffraction (PhD), and density functional theory (DFT). O 1s SXPS and O K-edge NEXAFS show that at high coverages a singly deprotonated monooxalate is formed with its molecular plane perpendicular to the surface and lying in the [11¯0] azimuth, while at low coverage a doubly-deprotonated dioxalate is formed with its molecular plane parallel to the surface. STM, LEED and SXPS show the dioxalate to form a (3 × 2) ordered phase with a coverage of 1/6 ML. O 1s PhD modulation spectra for the monooxalate phase are found to be simulated by a geometry in which the carboxylate O atoms occupy near-atop sites on nearest-neighbour surface Cu atoms in [11¯0] rows, with a CuO bondlength of 2.00 ± 0.04 Å. STM images of the (3 × 2) phase show some centred molecules attributed to adsorption on second-layer Cu atoms below missing [001] rows of surface Cu atoms, while DFT calculations show adsorption on a (3 × 2) missing row surface (with every third [001] Cu surface row removed) is favoured over adsorption on the unreconstructed surface. O 1s PhD data from dioxalate is best fitted by a structure similar to that found by DFT to have the lowest energy, although there are some significant differences in intramolecular bondlengths.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Molecular & Nanoscale Physics |
Depositing User: | Symplectic Publications |
Date Deposited: | 09 Oct 2018 14:39 |
Last Modified: | 09 Oct 2018 14:39 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.susc.2017.10.025 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:136876 |