Weigert, S. orcid.org/0000-0002-6647-3252 (1996) Landscape of uncertainty in Hilbert space for one-particle states. Physical Review A. pp. 2084-2088. ISSN 1094-1622
Abstract
The functional of uncertainty J[¿] assigns to each state ¿¿> the product of the variances of the momentum and position operators. Its first and second variations are investigated. Each stationary point is located on one of a countable set of three-dimensional manifolds in Hilbert space. For a harmonic oscillator with given mass and frequency the extremals are identified as displaced squeezed energy eigenstates. The neighborhood of the stationary states is found to have the structure of a saddle, thus completing the picture of the landscape of uncertainty in Hilbert space. This result follows from the diagonalization of the second variation of the uncertainty functional, which is not straightforward since J[¿] depends nonlinearly on the state ¿¿>.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 1996 The American Physical Society. Reproduced in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Mathematics (York) |
Depositing User: | Repository Officer |
Date Deposited: | 23 Jun 2006 |
Last Modified: | 11 Apr 2025 23:05 |
Published Version: | https://doi.org/10.1103/PhysRevA.53.2084 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1103/PhysRevA.53.2084 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:1365 |