Gomez-Rivas, E, Griera, A, Llorens, M-G et al. (3 more authors) (2017) Subgrain Rotation Recrystallization During Shearing: Insights From Full‐Field Numerical Simulations of Halite Polycrystals. Journal of Geophysical Research: Solid Earth, 122 (11). pp. 8810-8827. ISSN 2169-9313
Abstract
We present, for the first time, results of full‐field numerical simulations of subgrain rotation recrystallization of halite polycrystals during simple shear deformation. The series of simulations show how microstructures are controlled by the competition between (i) grain size reduction by creep by dislocation glide and (ii) intracrystalline recovery encompassing subgrain coarsening by coalescence through rotation and alignment of the lattices of neighboring subgrains. A strong grain size reduction develops in models without intracrystalline recovery, as a result of the formation of high‐angle grain boundaries when local misorientations exceed 15°. The activation of subgrain coarsening associated with recovery decreases the stored strain energy and results in grains with low intracrystalline heterogeneities. However, this type of recrystallization does not significantly modify crystal preferred orientations. Lattice orientation and grain boundary maps reveal that this full‐field modeling approach is able to successfully reproduce the evolution of dry halite microstructures from laboratory deformation experiments, thus opening new opportunities in this field of research. We demonstrate how the mean subgrain boundary misorientations can be used to estimate the strain accommodated by dislocation glide using a universal scaling exponent of about 2/3, as predicted by theoretical models. In addition, this strain gauge can be potentially applied to estimate the intensity of intracrystalline recovery, associated with temperature, using quantitative crystallographic analyses in areas with strain gradients.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | ©2017. American Geophysical Union. All Rights Reserved. This is the peer reviewed version of the following article: Gomez-Rivas, E, Griera, A, Llorens, M-G et al. (3 more authors) (2017) Subgrain Rotation Recrystallization During Shearing: Insights From Full‐Field Numerical Simulations of Halite Polycrystals. Journal of Geophysical Research: Solid Earth, 122 (11). pp. 8810-8827 which has been published in final form at https://doi.org/10.1002/2017JB014508. This article may be used for non-commercial purposes in accordance with AGU terms and Conditions for Use of Self-Archived Versions. |
Keywords: | subgrain rotation recrystallization; intracrystalline recovery; halite; misorientation; shearing; strain gauge |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst of Geophysics and Tectonics (IGT) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 19 Sep 2018 11:22 |
Last Modified: | 12 May 2019 19:35 |
Status: | Published |
Publisher: | AGU |
Identification Number: | 10.1002/2017JB014508 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:135921 |