Madhyastha, P., Wang, J.K. orcid.org/0000-0003-0048-3893 and Specia, L. (2018) End-to-end image captioning exploits multimodal distributional similarity. In: 29th British Machine Vision Conference. British Machine Vision Conference, 03-06 Sep 2018, Newcastle, UK. BMVA
Abstract
We hypothesize that end-to-end neural image captioning systems work seemingly well because they exploit and learn ‘distributional similarity’ in a multimodal feature space by mapping a test image to similar training images in this space and generating a caption from the same space. To validate our hypothesis, we focus on the ‘image’ side of image captioning, and vary the input image representation but keep the RNN text generation component of a CNN-RNN model constant. Our analysis indicates that image captioning models (i) are capable of separating structure from noisy input representations; (ii) suffer virtually no significant performance loss when a high dimensional representation is compressed to a lower dimensional space; (iii) cluster images with similar visual and linguistic information together. Our findings indicate that our distributional similarity hypothesis holds. We conclude that regardless of the image representation used image captioning systems seem to match images and generate captions in a learned joint image-text semantic subspace.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 The Authors. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Funding Information: | Funder Grant number EUROPEAN COMMISSION - HORIZON 2020 678017 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 23 Aug 2018 11:17 |
Last Modified: | 09 Oct 2019 14:13 |
Published Version: | http://www.bmva.org/bmvc/2018/contents/papers/0925... |
Status: | Published |
Publisher: | BMVA |
Refereed: | Yes |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:134914 |