Weigert, S. orcid.org/0000-0002-6647-3252 (2002) Quantum parametric resonance. Journal of Physics A: Mathematical and General. pp. 4169-4181. ISSN 0305-4470
Abstract
The quantum mechanical equivalent of parametric resonance is studied. A simple model of a periodically kicked harmonic oscillator is introduced which can be solved exactly. Classically stable and unstable regions in parameter space are shown to correspond to Floquet operators with qualitatively different properties. Their eigenfunctions, which are calculated exactly, exhibit a transition: for parameter values with classically stable solutions the eigenstates are normalizable while they cannot be normalized for parameter values with classically unstable solutions. Similarly, the spectrum of quasi energies undergoes a specific transition. These observations remain valid qualitatively for arbitrary linear systems exhibiting classically parametric resonance such as the paradigm example of a frequency modulated pendulum described by Mathieu's equation.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2002 IOP Publishing Ltd. This is an author produced version of a paper published in Journal of Physics A: Mathematical and General. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Mathematics (York) |
Depositing User: | Repository Officer |
Date Deposited: | 22 Jun 2006 |
Last Modified: | 21 Jan 2025 17:13 |
Published Version: | https://doi.org/10.1088/0305-4470/35/18/312 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1088/0305-4470/35/18/312 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:1349 |