Quarteroni, A, Lassila, T orcid.org/0000-0001-8947-1447, Rossi, S et al. (1 more author) (2017) Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function. Computer Methods in Applied Mechanics and Engineering, 314. pp. 345-407. ISSN 0045-7825
Abstract
Mathematical modeling of the human heart and its function can expand our understanding of various cardiac diseases, which remain the most common cause of death in the developed world. Like other physiological systems, the heart can be understood as a complex multiscale system involving interacting phenomena at the molecular, cellular, tissue, and organ levels. This article addresses the numerical modeling of many aspects of heart function, including the interaction of the cardiac electrophysiology system with contractile muscle tissue, the sub-cellular activation–contraction mechanisms, as well as the hemodynamics inside the heart chambers. Resolution of each of these sub-systems requires separate mathematical analysis and specially developed numerical algorithms, which we review in detail. By using specific sub-systems as examples, we also look at systemic stability, and explain for example how physiological concepts such as microscopic force generation in cardiac muscle cells, translate to coupled systems of differential equations, and how their stability properties influence the choice of numerical coupling algorithms. Several numerical examples illustrate three fundamental challenges of developing multiphysics and multiscale numerical models for simulating heart function, namely: (i) the correct upscaling from single-cell models to the entire cardiac muscle, (ii) the proper coupling of electrophysiology and tissue mechanics to simulate electromechanical feedback, and (iii) the stable simulation of ventricular hemodynamics during rapid valve opening and closure.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | Copyright (c) 2016 Elsevier B. V. All rights reserved. This is an author produced version of a paper published in Computer Methods in Applied Mechanics and Engineering. Uploaded in accordance with the publisher's self-archiving policy |
Keywords: | Coupling of multiphysics and multiscale models; Electrophysiology; Nonlinear elasticity; Navier–Stokes equations; Finite element methods; Simulation of cardiac diseases |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Aug 2018 10:42 |
Last Modified: | 14 Aug 2018 10:45 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.cma.2016.05.031 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:134504 |