Mulay, A., Hood, D.W., Williams, D. et al. (5 more authors) (2018) Loss of the homeostatic protein BPIFA1, leads to exacerbation of otitis media severity in the Junbo mouse model. Scientific Reports, 8. 3128. ISSN 2045-2322
Abstract
Otitis Media (OM) is characterized by epithelial abnormalities and defects in innate immunity in the middle ear (ME). Although, BPIFA1, a member of the BPI fold containing family of putative innate defence proteins is abundantly expressed by the ME epithelium and SNPs in Bpifa1 have been associated with OM susceptibility, its role in the ME is not well characterized. We investigated the role of BPIFA1 in protection of the ME and the development of OM using murine models. Loss of Bpifa1 did not lead to OM development. However, deletion of Bpifa1 in Evi1Jbo/+mice, a model of chronic OM, caused significant exacerbation of OM severity, thickening of the ME mucosa and increased collagen deposition, without a significant increase in pro-inflammatory gene expression. Our data suggests that BPIFA1 is involved in maintaining homeostasis within the ME under steady state conditions and its loss in the presence of inflammation, exacerbates epithelial remodelling leading to more severe OM.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Clinical Dentistry (Sheffield) The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Department of Infection, Immunity and Cardiovascular Disease The University of Sheffield > Sheffield Teaching Hospitals |
Funding Information: | Funder Grant number BIOTECHNOLOGY AND BIOLOGICAL SCIENCES RESEARCH COUNCIL (BBSRC) BB/K009737/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 27 Feb 2018 11:59 |
Last Modified: | 19 Apr 2024 11:31 |
Status: | Published |
Publisher: | Nature Publishing Group |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-018-21166-7 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:127667 |