Smith, AM, Whittaker, C, Shield, I et al. (1 more author) (2018) The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel, 220. pp. 546-557. ISSN 0016-2361
Abstract
To meet combustion quality requirements, Miscanthus is conventionally harvested in late winter/early spring after senescence due to a lowering of fuel nitrogen, chlorine and ash content. This can overcome combustion issues such as slagging, fouling and corrosion however there is a significant reduction in dry matter yields compared to early harvesting in the autumn. In this study, Miscanthus × giganteus harvested conventionally (after senescence) and early (green) have been pre-treated by hydrothermal carbonisation (HTC) at 200 °C and 250 °C. HTC at 200 °C improves the grindability of the biomass but results in limited energy densification. HTC at 250 °C results in increased energy densification producing a bio-coal with a HHV ranging from 27 to 28 MJ/kg for early and 25 to 26 MJ/kg for conventional harvesting; the Hardgrove Grindability Index (HGI) increases from 0 to 150. At higher HTC temperatures, the combustion profile of the bio-coal exhibits a ‘coal like’ single stage combustion profile. HTC results in a significant reduction in alkali metal content, increases safe combustion temperatures and reduces the theoretical propensity of the derived fuel to slag, foul and corrode. The results indicate that HTC can valorise both conventional and early harvested Miscanthus without producing any adverse effect on the yields and quality of the bio-coal. The challenges associated with early harvesting of Miscanthus appear to be largely overcome by HTC resulting in increased yields of up to 40% per hectare due to reduction in dry matter loss.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Miscanthus, Combustion, Slagging, Fouling, Grinding, Pre-treatment |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 26 Feb 2018 17:02 |
Last Modified: | 25 Jun 2023 21:14 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.fuel.2018.01.143 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:127616 |