Fernandez Dominguez, Beatriz, Petri, Marina Kalliopi orcid.org/0000-0002-3740-6106 and Paschalis, Stefanos orcid.org/0000-0002-9113-3778 (2018) Re-examining the transition into the N=20 island of inversion: structure of 30Mg. Physics Letters B : Nuclear, Elementary Particle and High-Energy Physics. pp. 124-129. ISSN 0370-2693
Abstract
Intermediate energy single-neutron removal from 31Mg has been employed to investigate the transition into the N=20 island of inversion. Levels up to 5 MeV excitation energy in 30Mg were populated and spin-parity assignments were inferred from the corresponding longitudinal momentum distributions and γ-ray decay scheme. Comparison with eikonal-model calculations also permitted spectroscopic factors to be deduced. Surprisingly, the 0 2 + level in 30Mg was found to have a strength much weaker than expected in the conventional picture of a predominantly 2p−2h intruder configuration having a large overlap with the deformed 31Mg ground state. In addition, negative parity levels were identified for the first time in 30Mg, one of which is located at low excitation energy. The results are discussed in the light of shell-model calculations employing two newly developed approaches with markedly different descriptions of the structure of 30Mg. It is concluded that the cross-shell effects in the region of the island of inversion at Z=12 are considerably more complex than previously thought and that np−nh configurations play a major role in the structure of 30Mg.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 Published by Elsevier B.V. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Physics (York) |
Depositing User: | Pure (York) |
Date Deposited: | 07 Feb 2018 15:30 |
Last Modified: | 30 Nov 2024 01:09 |
Published Version: | https://doi.org/10.1016/j.physletb.2018.02.002 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1016/j.physletb.2018.02.002 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:127207 |