Cressiot, Benjamin, Greive, Sandra J orcid.org/0000-0001-6067-2632, Si, Wei et al. (9 more authors) (2017) Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers:Nanopore Engineering and Characterization. ACS Nano. pp. 1-15. ISSN 1936-0851
Abstract
Nanopore-based sensors for nucleic acid sequencing and single-molecule detection typically employ pore-forming membrane proteins with hydrophobic external surfaces, suitable for insertion into a lipid bilayer. In contrast, hydrophilic pore-containing molecules, such as DNA origami, have been shown to require chemical modification to favor insertion into a lipid environment. In this work, we describe a strategy for inserting polar proteins with an inner pore into lipid membranes, focusing here on a circular 12-subunit assembly of the thermophage G20c portal protein. X-ray crystallography, electron microscopy, molecular dynamics, and thermal/chaotrope denaturation experiments all find the G20c portal protein to have a highly stable structure, favorable for nanopore sensing applications. Porphyrin conjugation to a cysteine mutant in the protein facilitates the protein's insertion into lipid bilayers, allowing us to probe ion transport through the pore. Finally, we probed the portal interior size and shape using a series of cyclodextrins of varying sizes, revealing asymmetric transport that possibly originates from the portal's DNA-ratchet function.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 American Chemical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details. |
Keywords: | Journal Article |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Chemistry (York) |
Depositing User: | Pure (York) |
Date Deposited: | 05 Dec 2017 14:50 |
Last Modified: | 21 Jan 2025 17:29 |
Published Version: | https://doi.org/10.1021/acsnano.7b06980 |
Status: | Published online |
Refereed: | Yes |
Identification Number: | 10.1021/acsnano.7b06980 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:124873 |
Download
Filename: Cressiot_2017_MS_submitted.pdf
Description: Cressiot_2017_MS_submitted