Williams, T., Taroyan, Y. and Fedun, V. orcid.org/0000-0002-0893-7346 (2016) The Nonlinear Evolution of a a Twist in a Magnetic Shocktube. Astrophysical Journal, 817 (2). p. 92. ISSN 0004-637X
Abstract
The interaction between a small twist and a horizontal chromospheric shocktube is investigated. The magnetic flux tube is modeled using 1.5-D magnetohydrodynamics. The presence of a supersonic yet sub-Alfvénic flow along the flux tube allows the Alfvénic pulse driven at the photospheric boundary to become trapped and amplified between the stationary shock front and photosphere. The amplification of the twist leads to the formation of slow and fast shocks. The pre-existing stationary shock is destabilized and pushed forward as it merges with the slow shock. The propagating fast shock extracts the kinetic energy of the flow and launches rapid twists of 10–15 km s−1 upon each reflection. A cavity is formed between the slow and fast shocks where the flux tube becomes globally twisted within less than an hour. The resultant highly twisted magnetic flux tube is similar to those prone to kink instabilities, which may be responsible for solar eruptions. The generated torsional flux is calculated.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016. The American Astronomical Society. Reproduced in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 11 Oct 2017 15:16 |
Last Modified: | 11 Oct 2017 15:18 |
Published Version: | https://doi.org/10.3847/0004-637X/817/2/92 |
Status: | Published |
Publisher: | American Astronomical Society |
Refereed: | Yes |
Identification Number: | 10.3847/0004-637X/817/2/92 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:122275 |