Stevenson, A, Burkhardt, J, Cockell, CS et al. (12 more authors) (2015) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environmental Microbiology, 17 (2). pp. 257-277. ISSN 1462-2912
Abstract
Since a key requirement of known life forms is available water (water activity; aw), recent searches for signatures of past life in terrestrial and extraterrestrial environments have targeted places known to have contained significant quantities of biologically available water. However, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water-activity. The lower limit of water activity that enables cell division appears to be ∼ 0.605 which, until now, was only known to be exhibited by a single eukaryote, the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, though, prokaryotic. Recent evidence now indicates that some halophilic Archaea and Bacteria have water-activity limits more or less equal to those of X. bisporus. We discuss water activity in relation to the limits of Earth's present-day biosphere; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources; whether prokaryotes were the first organisms able to multiply close to the 0.605-aw limit; and whether extraterrestrial aqueous milieux of ≥ 0.605 aw can resemble fertile microbial habitats found on Earth.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Editors: |
|
Copyright, Publisher and Additional Information: | © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Stevenson, A., Burkhardt, J., Cockell, C. S., Cray, J. A., Dijksterhuis, J., Fox-Powell, M., Kee, T. P., Kminek, G., McGenity, T. J., Timmis, K. N., Timson, D. J., Voytek, M. A., Westall, F., Yakimov, M. M. and Hallsworth, J. E. (2015), Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol, 17: 257–277. doi:10.1111/1462-2920.12598, which has been published in final form at https://doi.org/10.1111/1462-2920.12598. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemistry (Leeds) > Inorganic Chemistry (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 19 Feb 2018 15:02 |
Last Modified: | 19 Feb 2018 17:33 |
Status: | Published |
Publisher: | Wiley |
Identification Number: | 10.1111/1462-2920.12598 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:121554 |