Jain, Gaurav, Pendola, Martin, Huang, Yu-Chieh et al. (4 more authors) (2017) Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System. Biochemistry. pp. 3607-3618. ISSN 1520-4995
Abstract
In the nacre or aragonitic layer of an oyster pearl, there exists a 12-member proteome that regulates both the early stages of nucleation and nanoscale-to-mesoscale assembly of nacre tablets and calcitic crystals from mineral nanoparticle precursors. Several approaches to understanding protein-associated mechanisms of pearl nacre formation have been developed, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two pearl nacre-associated proteins, PFMG1 and PFMG2 (shell oyster pearl nacre, Pinctada fucata) whose individual in vitro mineralization functionalities are distinct from one another. Using scanning electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that at 1:1 molar ratios, rPFMG2 and rPFMG1 co-aggregate in specific molecular ratios to form hybrid hydrogels that affect both the early and later stages of in vitro calcium carbonate nucleation. Within these hybrid hydrogels, rPFMG2 plays a role in defining protein co-aggregation and hydrogel dimension, whereas rPFMG1 defines participation in nonclassical nucleation processes; both proteins exhibit synergy with regard to surface and subsurface modifications to existing crystals. The interactions between both proteins are enhanced by Ca(II) ions and may involve Ca(II)-induced conformational events within the EF-hand rPFMG1 protein, as well as putative interactions between the EF-hand domain of rPFMG1 and the calponin-like domain of rPFMG2. Thus, the pearl-associated PFMG1 and PFMG2 proteins interact and exhibit mineralization functionalities in specific ways, which may be relevant for pearl formation.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 American Chemical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details |
Keywords: | Animals,Calcium-Binding Proteins,Crystallization,EF Hand Motifs,Hydrogel,Microfilament Proteins,Microscopy, Atomic Force,Microscopy, Electron, Scanning,Models, Molecular,Nacre,Pinctada,Protein Aggregates,Protein Domains,Proteins,Journal Article |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Physics (York) The University of York > Faculty of Sciences (York) > Electronic Engineering (York) |
Depositing User: | Pure (York) |
Date Deposited: | 17 Aug 2017 13:30 |
Last Modified: | 23 Jan 2025 00:12 |
Published Version: | https://doi.org/10.1021/acs.biochem.7b00313 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1021/acs.biochem.7b00313 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:120295 |
Download
Filename: paper.pdf
Description: Functional prioritization and hydrogel regulation phenomena created by a combinatorial pearl-associated 2-protein biomineralization model system.