Alizadeh Behjani, M, Hassanpour, A, Ghadiri, M orcid.org/0000-0003-0479-2845 et al. (1 more author) (2017) Numerical Analysis of the Effect of Particle Shape and Adhesion on the Segregation of Powder Mixtures. In: Radjai, F, Nezamabadi, S, Luding, S and Delenne, JY, (eds.) EPJ Web of Conferences. Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media, 03-07 Jul 2017, Montpellier, France. EDP Sciences
Abstract
Segregation of granules is an undesired phenomenon in which particles in a mixture separate from each other based on the differences in their physical and chemical properties. It is, therefore, crucial to control the homogeneity of the system by applying appropriate techniques. This requires a fundamental understanding of the underlying mechanisms. In this study, the effect of particle shape and cohesion has been analysed. As a model system prone to segregation, a ternary mixture of particles representing the common ingredients of home washing powders, namely, spray dried detergent powders, tetraacetylethylenediamine, and enzyme placebo (as the minor ingredient) during heap formation is modelled numerically by the Discrete Element Method (DEM) with an aim to investigate the effect of cohesion/adhesion of the minor components on segregation quality. Non-spherical particle shapes are created in DEM using the clumped-sphere method based on their X-ray tomograms. Experimentally, inter particle adhesion is generated by coating the minor ingredient (enzyme placebo) with Polyethylene Glycol 400 (PEG 400). The JKR theory is used to model the cohesion/adhesion of coated enzyme placebo particles in the simulation. Tests are carried out experimentally and simulated numerically by mixing the placebo particles (uncoated and coated) with the other ingredients and pouring them in a test box. The simulation and experimental results are compared qualitatively and quantitatively. It is found that coating the minor ingredient in the mixture reduces segregation significantly while the change in flowability of the system is negligible.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Editors: |
|
Copyright, Publisher and Additional Information: | © The Authors, published by EDP Sciences, 2017. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Funding Information: | Funder Grant number Innovate UK fka Technology Strategy Board (TSB) 31587-233189 |
Depositing User: | Symplectic Publications |
Date Deposited: | 09 Aug 2017 11:09 |
Last Modified: | 09 Aug 2017 11:09 |
Status: | Published |
Publisher: | EDP Sciences |
Identification Number: | 10.1051/epjconf/201714006024 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:119909 |