Song, W., Muthana, M. orcid.org/0000-0003-2497-8903, Mukherjee, J. et al. (3 more authors) (2017) Magnetic-Silk Core–Shell Nanoparticles as Potential Carriers for Targeted Delivery of Curcumin into Human Breast Cancer Cells. ACS Biomaterials Science & Engineering, 3 (6). pp. 1027-1038. ISSN 2373-9878
Abstract
Curcumin is a promising anticancer drug but its applications in cancer therapy are limited due to its poor solubility, short half-life, and low bioavailability. In this article, we present a curcumin loaded magnetic silk fibroin core–shell nanoparticle system for sustained release of curcumin into breast cancer cells. Curcumin loaded magnetic silk fibroin core–shell nanoparticles were fabricated by a simple salting-out method using sodium phosphate with magnetic nanoparticles. The size, zeta potential, encapsulation/loading efficiency, and curcumin release rate were controlled and optimized by regulating silk fibroin concentration, pH value of the phosphate solution, and curcumin usage. Curcumin loaded magnetic silk fibroin core–shell nanoparticles showed enhanced cytotoxicity and higher cellular uptake in the human Caucasian breast adenocarcinoma cell line (MDA-MB-231cells) evidenced by MTT and cellular uptake assays. In addition, silk fibroin nanoparticles and magnetic silk fibroin nanoparticles without curcumin loaded were used as controls. The particles prepared using sodium phosphate showed significantly smaller diameter (90–350 nm) compared with those prepared using potassium phosphate, which possess a diameter range of 500–1200 nm. These smaller particles are superior for biomedical applications since such a size range is particularly desired for cell internalization. In addition, the magnetic cores inside the particles provide the possibility of using an external magnet for cancer targeting.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Biomaterials Science and Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsbiomaterials.7b00153. |
Keywords: | cancer; curcumin; drug delivery; magnetic nanoparticles; silk |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > The Medical School (Sheffield) > Division of Genomic Medicine (Sheffield) > Department of Oncology and Metabolism (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 04 Jul 2017 11:02 |
Last Modified: | 03 May 2018 00:39 |
Published Version: | https://doi.org/10.1021/acsbiomaterials.7b00153 |
Status: | Published |
Publisher: | American Chemical Society |
Refereed: | Yes |
Identification Number: | 10.1021/acsbiomaterials.7b00153 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:118277 |