Press, C., Duffy, C., Williams, J. et al. (2 more authors) (2017) Measurements of rates of cooling of a manikin insulated with different mountain rescue casualty bags. Extreme Physiology and Medicine, 6 (1).
Abstract
Background: Accidental hypothermia is common in those who sustain injuries in remote environments. This is unpleasant and associated with adverse effects on subsequent patient outcomes. To minimise further heat loss, a range of insulating systems are available to mountain rescue teams although the most effective and cost-efficient have yet to be determined.
Methods: Under ambient, still, dry, air conditions, a thermal manikin was filled with water at a temperature of 42 °C and then placed into a given insulation system. Water temperature was then continuously observed via an in-dwelling temperature sensor linked to a PROPAQ 100 series monitor and recorded every 10 min for 130 min. This method was repeated for each insulating package.
Results: The vacuum mattress/Pertex©/fibrepile blanket system, either on its own or coupled with the Wiggy bag, was the most efficient with water temperatures only decreasing by 3.2 °C over 130 min. This was followed by the heavy-weight casualty bags without the vacuum mattress/Pertex©/fibrepile blanket system, decreasing by 4.2–4.3 °C. With the Blizzard bag, a decline in water temperature of 5.4 °C was seen over the study duration while a decrease of 9.5 °C was noted when the plastic survival bag was employed.
Conclusions: Under the still-air conditions of the study, the vacuum mattress/Pertex©/fibrepile blanket was seen to offer comparable insulation effectiveness compared to be both heavy-weight casualty bags. In turn, these three systems appeared more efficient at insulating the manikin than the Blizzard bag or plastic survival bag.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
Keywords: | Hypothermia; Insulation; Pre-hospital; Mountain rescue; Trauma |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > The Medical School (Sheffield) > Division of Genomic Medicine (Sheffield) > Department of Oncology and Metabolism (Sheffield) The University of Sheffield > Sheffield Teaching Hospitals |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 18 May 2017 15:01 |
Last Modified: | 23 May 2017 11:16 |
Published Version: | https://doi.org/10.1186/s13728-017-0055-7 |
Status: | Published |
Publisher: | BioMed Central |
Refereed: | Yes |
Identification Number: | 10.1186/s13728-017-0055-7 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:116627 |
Download
Filename: Press_et_al_EPAM_2017_art_10.1186_s13728-017-0055-7.pdf
Licence: CC-BY 4.0