Mishra, B, Shoenfelt, E, Yu, Q et al. (3 more authors) (2017) Stoichiometry of mercury-thiol complexes on bacterial cell envelopes. Chemical Geology, 464. pp. 137-146. ISSN 0009-2541
Abstract
We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L− 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells was determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy. Hg(II) was found to complex entirely with cell bound thiols at low Hg:biomass ratios. For Bacillus subtilis and Shewanella oneidensis MR-1 cells, the Hg—S stoichiometry changed from Hg—S₃ to Hg—S₂ and Hg—S (where ‘S’ represents a thiol site such as is present on cysteine) progressively as the Hg(II) loading increased on the cells. However, Geobacter sulfurreducens did not form Hg—S₃ complexes. Because the abundance of thiol was highest for Geobacter sulfurreducens (75 μM/g wet weight) followed by Shewanella oneidensis MR-1 (50 μM/g wet weight) and Bacillus subtilis (25 μM/g wet weight), the inability of Hg(II) to form Hg—S₃ complexes on Geobacter sulfurreducens suggests that the density and reactivity of S-amino acid containing cell membrane proteins on Geobacter sulfurreducens are different from those of Bacillus subtilis and Shewanella oneidensis MR-1. Upon saturation of the high affinity thiol sites at higher Hg:biomass ratios, Hg(II) was found to form a chelate with α-hydroxy carboxylate anion. The stoichiometry of cell envelope bound Hg-thiol complexes and the associated abundance of thiols on the cell envelopes provide important insights for understanding the differences in the rate and extent of uptake and redox transformations of Hg in the environment.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2017 Published by Elsevier B.V. This is an author produced version of a paper published in Chemical Geology. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Hg; Speciation; Stoichiometry; Bacteria; Thiols; XANES; EXAFS; Cell envelope; Potentiometric titration; qBBR |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 15 May 2017 13:59 |
Last Modified: | 16 Feb 2018 01:38 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.chemgeo.2017.02.015 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:116453 |