Oh, J, Gleeson, HF orcid.org/0000-0002-7494-2100 and Dierking, I (2017) Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals. Physical Review E, 95 (2). 022703. ISSN 2470-0045
Abstract
The application of an electric field to microspheres suspended in a liquid crystal, causes particle translation in a plane perpendicular to the applied field direction. Depending on applied electric field amplitude and frequency, a wealth of different motion modes may be observed above a threshold, which can lead to linear, circular or random particle trajectories. We present the stability diagram for these different translational modes of particles suspended in the isotropic and the chiral nematic phase of a liquid crystal, and investigate the angular velocity, circular diameter, and linear velocity as a function of electric field amplitude and frequency. In the isotropic phase a narrow field amplitude-frequency regime is observed to exhibit circular particle motion whose angular velocity increases with applied electric field amplitude, but is independent of applied frequency. The diameter of the circular trajectory decreases with field amplitudes as well as frequency. In the cholesteric phase linear as well as circular particle motion is observed. The former exhibits an increasing velocity with field amplitude, while decreasing with frequency. For the latter, the angular velocity exhibits an increase with field amplitude and frequency. The rotational sense of the particles on a circular trajectory in the chiral nematic phase is independent of the helicity of the liquid crystalline structure, as is demonstrated by employing a cholesteric twist inversion compound.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 American Physical Society. This is an author produced version of a paper accepted for publication in Physical Review E. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Soft Matter Physics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 13 Feb 2017 11:21 |
Last Modified: | 16 Jan 2018 08:20 |
Published Version: | https://doi.org/10.1103/PhysRevE.95.022703 |
Status: | Published |
Publisher: | American Physical Society |
Identification Number: | 10.1103/PhysRevE.95.022703 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:112254 |