Vollrath, A, Zucca, F, Bekaert, D et al. (4 more authors) (2017) Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy. Remote Sensing, 9 (1). p. 33. ISSN 2072-4292
Abstract
Differential Interferometric SAR (DInSAR) time-series techniques can be used to derive surface displacement rates with accuracies of 1 mm/year, by measuring the one-dimensional distance change between a satellite and the surface over time. However, the slanted direction of the measurements complicates interpretation of the signal, especially in regions that are subject to multiple deformation processes. The Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements (SISTEM) algorithm enables decomposition into a three-dimensional velocity field through joint inversion with GNSS measurements, but has never been applied to interseismic deformation where strain rates are low. Here, we apply SISTEM for the first time to detect tectonic deformation on the Hyblean Foreland Plateau in South-East Sicily. In order to increase the signal-to-noise ratio of the DInSAR data beforehand, we reduce atmospheric InSAR noise using a weather model and combine it with a multi-directional spatial filtering technique. The resultant three-dimensional velocity field allows identification of anthropogenic, as well as tectonic deformation, with sub-centimeter accuracies in areas of sufficient GPS coverage. Our enhanced method allows for a more detailed view of ongoing deformation processes as compared to the single use of either GNSS or DInSAR only and thus is suited to improve assessments of regional seismic hazard.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | DInSAR time-series; StaMPS; TRAIN; SISTEM; tropospheric correction; GPS; joint inversion; neotectonics |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst of Geophysics and Tectonics (IGT) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 13 Feb 2017 13:22 |
Last Modified: | 05 Oct 2017 16:08 |
Published Version: | http://doi.org/10.3390/rs9010033 |
Status: | Published |
Publisher: | MDPI |
Identification Number: | 10.3390/rs9010033 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:112247 |