Chow, Samuel Khai Ho (2017) Roth–Waring–Goldbach. International Mathematics Research Notices. 2341–2374. ISSN 1687-0247
Abstract
We use Green's transference principle to show that any subset of the $d$th powers of primes with positive relative density contains nontrivial solutions to a translation-invariant linear equation in $d^2+1$ or more variables, with explicit quantitative bounds.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016 Oxford University Press. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Mathematics (York) |
Funding Information: | Funder Grant number EPSRC EP/J018260/1 |
Depositing User: | Pure (York) |
Date Deposited: | 23 Jan 2017 15:34 |
Last Modified: | 07 Jan 2025 00:09 |
Published Version: | https://doi.org/10.1093/imrn/rnw307 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1093/imrn/rnw307 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:111119 |
Download
Filename: RothWaringGoldbach_161123.pdf
Description: RothWaringGoldbach_161123