Al-Haideri, H., White, M.A. and Kelly, D.J. orcid.org/0000-0002-0770-6845 (2016) Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni. Environmental Microbiology, 18 (2). pp. 721-735. ISSN 1462-2912
Abstract
Campylobacter jejuni, the leading cause of human bacterial gastroenteritis, requires low environmental oxygen and high carbon dioxide for optimum growth, but the molecular basis for the carbon dioxide requirement is unclear. One factor may be inefficient conversion of gaseous CO2 to bicarbonate, the required substrate of various carboxylases. Two putative carbonic anhydrases (CAs) are encoded in the genome of C. jejuni strain NCTC 11168 (Cj0229 and Cj0237). Here, we show that the deletion of the cj0237 (canB) gene alone prevents growth in complex media at low (1% v/v) CO2 and significantly reduces the growth rate at high (5% v/v) CO2. In minimal media incubated under high CO2, the canB mutant grew on L-aspartate but not on the key C3 compounds L-serine, pyruvate and L-lactate, showing that CanB is crucial in bicarbonate provision for pyruvate carboxylase-mediated oxaloacetate synthesis. Nevertheless, purified CanB (a dimeric, anion and acetazolamide sensitive, zinc-containing type II beta-class enzyme) hydrates CO2 actively only above pH 8 and with a high Km (∼34 mM). At typical cytoplasmic pH values and low CO2, these kinetic properties might limit intracellular bicarbonate availability. Taken together, our data suggest CanB is a major contributor to the capnophilic growth phenotype of C. jejuni.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. This is an author produced version of a paper subsequently published in Environmental Microbiology. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Molecular Biology and Biotechnology (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 25 Jan 2017 16:42 |
Last Modified: | 23 Mar 2018 13:34 |
Published Version: | https://doi.org/10.1111/1462-2920.13092 |
Status: | Published |
Publisher: | Wiley |
Refereed: | Yes |
Identification Number: | 10.1111/1462-2920.13092 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:110414 |