Wilcock, C.J., Gentile, P., Hatton, P.V. et al. (1 more author) (2017) Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications. Journal of Visualized Experiments, 120. e55343. ISSN 1940-087X
Abstract
Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health applications.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Bioengineering, Issue 120, Nanoscale, Hydroxyapatite, Calcium phosphate, Orthopaedic, Dental, Craniofacial, Bioinspired, Biomimetic |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Clinical Dentistry (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 31 Oct 2016 16:10 |
Last Modified: | 23 Feb 2019 01:38 |
Published Version: | https://doi.org/10.3791/55343 |
Status: | Published |
Publisher: | Journal of Visualized Experiments (JoVE) |
Refereed: | Yes |
Identification Number: | 10.3791/55343 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:106394 |
Downloads
Filename: Rapid mix.pdf
Filename: jove-protocol-55343-rapid-mix-preparation-bioinspired-nanoscale-hydroxyapatite-for.pdf
Licence: CC-BY 3.0