Ghoussaini, M, French, J.D., Michailidou, K. et al. (122 more authors) (2016) Evidence that the 5p12 variant rs10941679 confers susceptibility to estrogen receptor positive breast cancer through FGF10 and MRPS30 regulation. American Journal of Human Genetics, 99 (4). pp. 903-911. ISSN 0002-9297
Abstract
Genome-wide association studies (GWAS) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine-mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). Using data for 3,365 genotyped and imputed single nucleotide polymorphisms (SNPs) across a 1Mb (positions 44394495-45364167; NCBI build 37) panel we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen receptor-positive (ER+) breast cancer (per-g allele OR ER+=1.15; 95% CI 1.13-1.18; P=8.35x10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER-=1.10; 95% CI 1.05-1.14; P-conditional=1.44E-12); and a single signal 3 SNP (rs200229088: per-t allele OR ER+=1.12; 95% CI 1.09-1.15; P-conditional=1.12E-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is over-expressed in ~10% of human breast cancers, while MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © � 2016 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > The Medical School (Sheffield) > Division of Genomic Medicine (Sheffield) > Department of Oncology and Metabolism (Sheffield) The University of Sheffield > Sheffield Teaching Hospitals |
Funding Information: | Funder Grant number YORKSHIRE CANCER RESEARCH S299 CANCER RESEARCH UK (CRUK) C5410/A7315. |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 20 Jul 2016 12:29 |
Last Modified: | 15 Nov 2016 18:17 |
Published Version: | https://doi.org/10.1016/j.ajhg.2016.07.017 |
Status: | Published |
Publisher: | Elsevier |
Refereed: | Yes |
Identification Number: | 10.1016/j.ajhg.2016.07.017 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:102645 |