Qian, P., Swainsbury, D.J.K. orcid.org/0000-0002-0754-0363, Croll, T.I. et al. (4 more authors) (2021) Cryo-EM structure of the Rhodobacter sphaeroides light-harvesting 2 complex at 2.1 Å. Biochemistry, 60 (44). pp. 3302-3314. ISSN 0006-2960
Abstract
Light-harvesting 2 (LH2) antenna complexes augment the collection of solar energy in many phototrophic bacteria. Despite its frequent role as a model for such complexes, there has been no three-dimensional (3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy (cryo-EM) to determine the 2.1 Å resolution structure of this LH2 antenna, which is a cylindrical assembly of nine αβ heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution of this structure reveals all of the interpigment and pigment–protein interactions that promote the assembly and energy-transfer properties of this complex. Near the cytoplasmic face of the complex there is a ring of nine BChls, which absorb maximally at 800 nm and are designated as B800; each B800 is coordinated by the N-terminal carboxymethionine of LH2-α, part of a network of interactions with nearby residues on both LH2-α and LH2-β and with the carotenoid. Nine carotenoids, which are spheroidene in the strain we analyzed, snake through the complex, traversing the membrane and interacting with a ring of 18 BChls situated toward the periplasmic side of the complex. Hydrogen bonds with C-terminal aromatic residues modify the absorption of these pigments, which are red-shifted to 850 nm. Overlaps between the macrocycles of the B850 BChls ensure rapid transfer of excitation energy around this ring of pigments, which act as the donors of energy to neighboring LH2 and reaction center light-harvesting 1 (RC–LH1) complexes.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 American Chemical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/) |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) |
Funding Information: | Funder Grant number BIOTECHNOLOGY AND BIOLOGICAL SCIENCES RESEARCH COUNCIL BB/M000265/1 EUROPEAN COMMISSION - HORIZON 2020 854126 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 03 Mar 2022 16:50 |
Last Modified: | 11 Feb 2023 02:19 |
Status: | Published |
Publisher: | American Chemical Society |
Refereed: | Yes |
Identification Number: | 10.1021/acs.biochem.1c00576 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:184264 |
Download
Filename: Cryo-EM Structure of the iRhodobacter sphaeroidesi Light-Harvesting 2 Complex at 2.1 Å.pdf
Licence: CC-BY 4.0