Piena, M.A., Kroep, S., Simons, C. et al. (4 more authors) (2022) An innovative approach to modelling the optimal treatment sequence for patients with relapsing–remitting multiple sclerosis : implementation, validation, and impact of the decision-making approach. Advances in Therapy, 39 (2). pp. 892-908. ISSN 0741-238X
Abstract
Introduction
An innovative computational model was developed to address challenges regarding the evaluation of treatment sequences in patients with relapsing–remitting multiple sclerosis (RRMS) through the concept of a ‘virtual’ physician who observes and assesses patients over time. We describe the implementation and validation of the model, then apply this framework as a case study to determine the impact of different decision-making approaches on the optimal sequence of disease-modifying therapies (DMTs) and associated outcomes.
Methods
A patient-level discrete event simulation (DES) was used to model heterogeneity in disease trajectories and outcomes. The evaluation of DMT options was implemented through a Markov model representing the patient’s disease; outcomes included lifetime costs and quality of life. The DES and Markov models underwent internal and external validation. Analyses of the optimal treatment sequence for each patient were based on several decision-making criteria. These treatment sequences were compared to current treatment guidelines.
Results
Internal validation indicated that model outcomes for natural history were consistent with the input parameters used to inform the model. Costs and quality of life outcomes were successfully validated against published reference models. Whereas each decision-making criterion generated a different optimal treatment sequence, cladribine tablets were the only DMT common to all treatment sequences. By choosing treatments on the basis of minimising disease progression or number of relapses, it was possible to improve on current treatment guidelines; however, these treatment sequences were more costly. Maximising cost-effectiveness resulted in the lowest costs but was also associated with the worst outcomes.
Conclusions
The model was robust in generating outcomes consistent with published models and studies. It was also able to identify optimal treatment sequences based on different decision criteria. This innovative modelling framework has the potential to simulate individual patient trajectories in the current treatment landscape and may be useful for treatment switching and treatment positioning decisions in RRMS.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 The Author(s). This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/. |
Keywords: | Decision criteria; Relapsing–remitting multiple sclerosis; Resource utilization; Treatment switching; Treatment-sequencing model |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Health and Related Research (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Dec 2021 14:17 |
Last Modified: | 17 Mar 2022 01:23 |
Status: | Published |
Publisher: | Springer Nature |
Refereed: | Yes |
Identification Number: | 10.1007/s12325-021-01975-5 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:181752 |