Lang, Polly E., Carslaw, David C. orcid.org/0000-0003-0991-950X and Moller, Sarah J. orcid.org/0000-0003-4923-9509
(2019)
A trend analysis approach for air quality network data.
Atmospheric Environment: X.
100030.
ISSN 2590-1621
Abstract
Trend analysis of air pollutant concentrations becomes problematic when applied to data from air quality monitoring networks containing time series of differing lengths. The average trend from such data can be misleading due to biases in the monitoring network. For example, if new monitoring sites located in more polluted locations are added to a network, the introduction of these time series can leverage the trend upwards. A method for resolving this problem was developed, using rolling window regression to recursively calculate the change in pollutant concentration as a function of time, which can be used as a proxy for the true trend. The efficacy of the method was established by conducting simulations with known trends. The rolling change trend was shown to more accurately reflect the true trend than simply averaging the time series. Application of the technique to estimate trends in NO x , NO 2 and NO 2 /NO x concentrations at London roadside monitoring sites over the period 2000–2017 revealed clear differences from the simple average. In particular, a significant monotonic downward trend in NO x concentration was observed, in stark contrast to the average trend, which suggested little change in NO x concentration had occurred over the same period. By accurately representing trends using time series of different lengths, this method has the benefit of being able to describe changes in air quality for locations and time periods with otherwise insufficient data.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 Published by Elsevier Ltd. |
Keywords: | Air quality,Bias,Monitoring network,Rolling regression,Trend analysis |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Chemistry (York) |
Depositing User: | Pure (York) |
Date Deposited: | 23 Apr 2019 10:40 |
Last Modified: | 19 Oct 2024 00:01 |
Published Version: | https://doi.org/10.1016/j.aeaoa.2019.100030 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1016/j.aeaoa.2019.100030 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:145261 |
Download
Filename: 1_s2.0_S2590162119300334_main.pdf
Description: 1-s2.0-S2590162119300334-main
Licence: CC-BY-NC-ND 2.5